
SGNOG
Hackathon 2019

What is a Hackathon?

● Group of people (mostly strangers) collaborating and
working intensive together to fix some problem(s), pain
points.

○ New ideas, features

○ Manual & repetitive tasks
● Coding, scripting , programming, software

development
● Creating solution (prototype) in the end

What actually happened?

● Coding Workshop
● Lab work (setting up shell environment, created some

virtual routers)
● Hack starts!
● while (hack)
{

eat();
code();

}

What they did ?

● Hear from them!
● 2 examples of the hack ideas to be shared

Problem Statement- StateDb

More
network

automation
engineers

More
scripts

More
redundant
access to
the device

layer

Faulty code
might not
close“ssh”
sessions

Redundant
development

effort

ABSTRACTION?

Flask
Netmiko
SNMP
Redis
REST

Solution: Network State DB

{
"host1": {

"bgp": {
"enabled":bool
"bgp": [peer1,peer2, peer3,...],
peer1: {"local_asn": local_as, "remote_asn":neigh_as, "state": state_prfxrcd},
peer2: {"local_asn": local_as, "remote_asn":neigh_as, "state": state_prfxrcd},
peer_count: int
prfx_count: int
not_est_count: int

},
"interface": {

interfaces: [interface1, interface2, ...]
interface1 : { "desc": description, "status": link_status }
interface2 ...

},
"lldp": {

enabled: bool
lldp: [local_if1, local_if2, ...]
local_if1: {"nbr_name": neighbor, "nbr_if": neighbor_interface }
local_if2:...

},
"ntp": {

"enabled": bool
ntp:[server_name1,server_name2,..]
status: Bool
reference: ref_server_name

},

}

}

StateDB GET /v1/device/host1

Device Space Code Space User Space

Architecture:

API Server

SNMP
Server

D
ev

1

D
ev

2

D
ev

3

D
ev

ice
 P

la
ne

Device
Controller

Redis
Store

1.SNMP TRAP

3.GET <Dev X>
4. Poll info(Netmiko)

5. Send Info(Netmiko)
6. Send Info(JSON)

2.Change Notification

7. POST <Dev X>

REST API

Demo:

1 2

3

4

Problem Statement- BGP Prefix-Set
Modification via Python Script

u Customer’s request to update their prefix-set is being done manually through these
tedious, repetitive tasks:

v Given the customer Service ID, look for the valid BGP neighbor

v From the BGP configuration, look for applied route policy name

v With the route policy name, derive the prefix-set name

v Update the policy to add/remove the prefix

v Validate the change

u Manual configuration of these BGP policies are more prone to human-error

Solution:

Source: https://github.com/shhackathon/sgnog19
Packages Used: netmiko, ciscoconfparse, ipaddress

Prefix
Modifier

Costumer ID
Target Prefix
Actions(+,-)

Config Router
Diff
Is Success?

Config
Cache

https://github.com/shhackathon/sgnog19

Demo

1. Prefix-set config before change

2. Script Output:

3.Prefix-set config after change:

Key Takeaways

Teamwork

Agility

Open
Source

Great Food

#Fin.

Questions, Suggestions?

